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Abstract- The problem of sequential probability assignment 
for individual sequences is investigated. We compare the prob- 
abilities assigned by any sequential scheme to the performance 
of the best “batch” scheme (model) in some class. For the class 
of finite-state schemes and other related families, we derive 
a deterministic performance bound, analogous to the classical 
(probabilistic) Minimum Description Length (MDL) bound. It 
holds for “most” sequences, similarly to the probabilistic setting, 
where the bound holds for “most” sources in a class. It is shown 
that the bound can be attained both pointwise and sequentially 
for any model family in the reference class and without any 
prior knowledge of its order. This is achieved by a universal 
scheme based on a mixing approach. The bound and its sequential 
achievability establish a completely deterministic significance to 
the concept of predictive MDL. 

Index Terms-Universal coding, sequential schemes, minimum 
description length, finite-state machines, prediction, gambling. 

I. INTRODUCTION 

T is widely recognized, following Solomonoff [28] and I more recently Rissanen [21], 1231 and Dawid 191, that an 
important goal in inductive inference is learning a conditional 
probability distribution of future data based on the past. 
Imagine a situation where data is observed sequentially, i.e., at 
each time instant z and after having observed past data z; = 
21x2 . . . xi one wishes to make inferences on the next outcome 
x;+1 by assigning a conditional probability distribution p ( .  1x1) 
to it. In the long run, the goal is to maximize the assigned 
probability of the entire sequence 

n-1 

P ( G )  = r IP (Z i+ l iZ l ) .  (1) 
i=O 

This probability assignment problem finds its applications in 
coding [24], gambling [lo], and prediction 1261. In noiseless 
coding, for example, -logP(x;) is the code length of a 
Shannon code, based on the above probability assignment, 
which can be implemented sequentially by arithmetic coding 
[24]. Clearly, a good inference procedure that induces a high 
probability P(x;”) also yields a short code to the given input. 
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As for gambling, if the {x,} are binary, then 2 n P ( x y )  is 
the capital gain obtained by investing, at each time instant, 
a fraction of the current fortune that is proportional to the 
conditional probability p(.lx:) of the next outcome. Again, 
the larger the probability assigned to x;”, the larger is the final 
fortune. 

In spite of being concerned with a sequential probability 
assignment problem, we do not assume the data to be generated 
by a probabilistic source but, rather, we regard xy as an 
individual sequence over a finite alphabet A. Suppose that we 
have a class of machines with limited resources that assign 
probabilities to sequences. In many cases, the probabilities 
induced by these machines correspond to parametric proba- 
bilistic models, e.g., the class of finite-state (FS) machines 
(or FSM’s) is associated with probabilistic FS sources, block 
codes correspond to blockwise memoryless sources, and so 
on. Let each machine (or model) in the class be indexed 
by a parameter vector 8 that takes values in a set 0 whose 
dimension IC expresses the amount of resources. Let Pe(x;) 
be the probability assigned to a sequence x; by the machine 
8. Observe that any machine 8 can be viewed as a sequential 
probability assignment scheme which at time z+ 1, after having 
observed x:, assigns to x,+1 a conditional probability 

provided that the marginality condition 

CPe(xta) = P8C.t) (3) 
aEA 

is satisfied for all 2 1. Now, given x?, we are interested 
in the logarithm of the assigned probabilities, which gives the 
code length, or the capital growth rate, induced by the assign- 
ment. If the whole sequence was available in advance, then 
the highest log-likelihood in the family, log maxeEsPe(xy), 
would be attained by a machine 8(x;). However, since e(x?) 
depends OII the entire sequence, it cannot be anticipated in a 
sequential regime. Thus, the maximum likelihood probability 
cannot be assigned to all sequences by a single machine. 
But we wish to design a single universal sequential ma- 
chine, that implements a probability assignment by reading 
the compoiients of 2;” serially and assigning dynamically con- 
ditional probabilities p(x,+l&) on-line. Here the attributes 
“sequential” and “universal” are highly interrelated as they 
both mean that the conditional distribution p(.Ix;) depends 
neither on x,+1 nor on future outcomes. In addition, by 
universality we also mean closeness to optimality and this 
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raises the question: How does the accumulated log-likelihood xi>,, logp(xi+llzi) assigned by any universal scheme com- 
pare to the optimum “batch” performance log maxgGQP8(z;)? 

An upper bound on the accumulated log-likelihood of any 
universal scheme, that holds for “most” sequences (with a 
suitable definition of this term), and which is related to the 
concept of competitive optimality of codes [4], [ 111, is applied 
to show our first result, stating that for FSM’s and other related 
families, the above log-likelihood must be asymptotically far 
away from the maximum by a quantity at least as large as 
0.5k log n, for “most” sequences. As for noiseless coding, this 
means that for any uniquely decipherable encoder that assigns 
to x; a code whose length is L(x?),  for any E > 0, all large 
n, and “most” sequences, 

This result can be viewed as a deterministic counterpart to the 
classical probabilistic lower bound [22], which states that for 
any (universal) code, and for “practically all” sources in the 
class {Po(.) ,  8 E e}, the expected code length essentially 
cannot be less than -Eelog Pe(x;) + 0.5k log n, where Ea 
denotes expectation with respect to (w.r.t.) Pd. The bound 
in [22] has strengthened earlier minimax bounds for universal 
codes developed in [6]-[8] and [ 131. Similarly, (4) strengthens 
the asymptotic version of a pointwise minimax bound due to 
Shtar’kov [27, Theorem 11 (where a maximum over all n- 
sequences is taken). Thus, while the minimax results state that 
there exist “situations” where the lower bound holds (where 
a situation means a source or a sequence, depending on the 
framework), in [22] and here in (4) the bound holds for most 
situations, where the term “most” will be defined later. It must 
be said, however, that while the minimax bounds hold for 
any value of n (see [7] and [271), the corresponding stronger 
bounds are merely asymptotic. 

Another aspect of (4) is a justification of the concept 
of Minimum Description Length (MDL) for individual se- 
quences. The quantity -log m a x ~ E e P ~ ( x ~ )  + 0.5k log n in 
(4) is recognized as the asymptotic stochastic complexity of 
x? w.r.t. the model family 0, [21], and is the basic ingredient 
in the MDL principle [ 181, [ 191. This principle is applied when 
we wish to select a model that “explains best” x;, among all 
models in a sequence of parametric families {Pm,d(.) ,  8 E 
Om}, m = 1, 2, . . . , where 0, is a set of parameter vectors 
whose dimension k ,  is nondecreasing with m. Specifically, 
the MDL principle suggests choosing the model that minimizes 
the code length for x;. In its original formulation the code 
length was computed with a “two-part” code, in which the 
parameters are optimally quantized and encoded, and then 
the data is encoded with an ideal code length [24], given the 
quantized parameters. Asymptotically, this results in choosing 
the model that attains 

-1ogPm,8(x;) + -1ogn 2 . 
m ,  8 1 

Assuming that the parametric families are nested, the first term 
in (5)  is nonincreasing with k,, while the second term is 

increasing. Thus, their sum is normally minimized by some 
finite m. 

The justification of refemng to (5) as the MDL of 2’; 
has been originally provided in [ 181 and [ 191 merely on the 
basis of the above particular coding scheme. Nevertheless, a 
profound justification exists when xy is treated as a member 
of a probabilistic ensemble and expectation is taken. In this 
probabilistic setting, the above mentioned lower bound on the 
expected length [22] is a converse to the universal coding the- 
orem. Thus, the codes traditionally used to express the MDL 
(two-part, enumerative, mixture, predictive [20]-[22], [29]) 
are justified by achieving a lower bound “on the average.” 
The fundamental idea of the MDL principle, however. resides 
in fitting a probabilistic model to a deterministic sequence, 
and thus a stronger justification of the definition of (5) as 
“the information in xy” [22] results from the bound (4) or its 
immediate cclrollary 

L(x;) 2 inin [ -log P,, @(xG;) + (% - E) log n] , (6) 
m, 8 

which again holds for any encoder and “most” sequences. 
Our second main result is that for many useful model 

classes m Citn be assumed as unknown, yet a sequential 
scheme for optimal probability assignment exists. Moreover, 
this scheme is strongly sequential, i.e., the target length n 
of the sequence does not have to be prespecified. Here, 
optimality means that our strongly sequential scheme is guar- 
anteed to assign a likelihood that is essentially not less than 
maxm, @[log l’,, e (”;)  - 0.5k,logn], namely, to attain the 
bound for any value of m simultaneously. Thus, the scheme 
is “twice-uniiersal” [25]. In terms of noiseless coding, this 
means a strongly sequential code whose length never exceeds 
(6), where tl-e minimum is taken w.r.t. any finite subset of 
indexes {m}  that is not necessarily known a priori. 

The idea in constructing this doubly-universal scheme is 
to define the universal probability measure P( . )  as a two- 
level mixture of all models (machines) in the family. The 
first level consists of a continuous mixture in each 0,. 
This is easy to implement (in the FS case) sequentially 
by accumulating a product of the current (biased) relative 
frequency estimates of the conditional probabilities at each 
time instant (a variation of Laplace’s estimator [131, [27]). 
The second eve1 of mixing assumes a certain prior on the 
integers m == 1, 2 , . . . ,  which if chosen appropriately, cre- 
ates an overall mixture P(x;”) satisfying (3), thus inducing 
conditional Flrobabilities { p ( z , + l  IxZ,)}:zi that depend on z 
and but not on n. Hence, it can be implemented in a 
strongly Sequential fashion. Moreover, a key observation is 
that for the considered model families, the countable mixture 
over m, in fict, degenerates to a finite mixture, because the 
contribution of all first-level mixtures over 0, is the same 
for all valuer of m that exceed a certain threshold depending 
on n. A similar approach has been proposed in [26] for batch 
coding of Markovian probabilistic sources. Here we widen 
the scope bo1 h to the sequential deterministic setting and to a 
more general framework that allows several other families of 
machines. Examples are Markovian (finite-memory) machines, 
block encoders, and a family of models that allows an abrupt 
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switch from one FSM to another. For the sake of concreteness, 
we present the main results first for FSM’s, but we show later 
how similar ideas are applicable to the other model families. 
In the FSM case, the double universality implies that both the 
cardinality and the connectivity of the graph supporting the 
FSM are unspecified. The achievability of the bound further 
strengthens the deterministic significance of the (predictive) 
MDL concept. 

Note that the Lempel-Ziv algorithm [33] also induces 
conditional probability distributions [24, Theorem 11, [ 141 
such that the log-likelihood of any individual sequence is 
asymptotically as large as that assigned by any fixed FS model. 
This follows since the induced probability measure can be 
interpreted as a Markovian measure of slowly growing order, 
which eventually assigns a probability higher than that of 
any FS scheme. However, the Markovian order is growing 
indefinitely, and hence, unlike our results, the “redundancy” 
is large as compared to the lower bound (6). 

It is interesting to point out that in the probabilistic setting 
where x; is governed by some FS source, it has been shown 
[29] that the MDL is attainable by using a “plug-in” approach, 
namely, by a sequential encoder that at each time instant re- 
estimates a model in the family (the number of states, the 
structure of the machine, and the parameter e), and arithmetic 
coding [24] w.r.t. this estimate is employed to encode the next 
symbol. On first glance, it seems natural to apply this approach 
when double universality in a deterministic setting is required. 
However, we show that for a wide class of reasonable model 
estimators, it does not attain the MDL for every sequence. 

The outline of the paper is as follows. In Section I1 we 
establish the performance bound and discuss its significance. 
In Section 111, we discuss the achievability of the bound in light 
of previous work dealing with sequential or doubly-universal 
codes in the FS class ([20], [25], [27], [29]), and rule out 
the “plug-in” approach. In Section IV, we present the mixture 
approach and show that it attains the bound while degenerating 
to a finite (calculable) summation. Finally, in Section V, we 
show how the proposed method is applied to handle the issue 
of both sequentially and doubly universality for other model 
classes, where we have a countable set of model families and 
a strongly sequential universal scheme for each family. 

11. STATEMENT OF THE PROBLEM A N D  PERFORMANCE BOUND 

Consider the problem of designing a machine M that, when 
fed with a finite-alphabet sequence xy, sequentially assigns a 
conditional probability distribution for the next outcome given 
the past. What are the fundamental limitations on the highest 
attainable probability? To answer this question we start by 
establishing a simple general upper bound on the probabilities 
PM(z;) allocated by M to “most” sequences 2;. 

Hereafter, we assume that the input alphabet A consists of 
a letters and we denote the set of all n-sequences by A”. A 
partition {Tj}jN1 of A” is a collection of N disjoint subsets of 
A” whose union is exactly A”. The following lemma states 
that the set of sequences that violate the above mentioned 
upper bound is small in some sense. Later on we shall apply 
this lemma to compare the probabilities assigned by M to 

those generated by FSM’s, which induce a natural partitioning 
of A” into types. 

Lemma ,’: Let PM(x;) denote the probability assigned by 
a scheme Jkl to a sequence x;. Given E > 0 and a partition 
{Tj}Y=l of A”, let B M ( E )  denote the set of sequences over 
A” that do not satisfy the upper bound 

(7) 

where T ( z ; )  denotes the class containing xy. Then, the 
fractions p j  of sequences in Tj belonging to BM(E), defined 
by 

satisfy 

(9) 

Lemma I implies that if N grows with n, then the average 
fraction of sequences in each class to which M assigns 
probabilities that violate (7), vanishes with n. In particular, 
if M is constrained to assign a fixed probability within 
each class, then the fraction of classes whose sequences have 
“large” probabilities vanishes. 

Proof of Lemma 1: We have 

which yields (9). Q.E.D. 
Applying Chebyshev’s inequality using a uniform distribu- 

tion over the classes, it is easy to see that the fraction of classes 
containing a significant fraction of sequences with “large” 
probabilities, vanishes, as stated in Corollary 1 .  

Corollary I: Let ” ( E )  denote the number of classes T 
for which 

Then, 

Lemma L can be interpreted in terms of competitive opti- 
mality of codes [4], [ l l ] .  Consider a probability distribution 
PT(.) over A” that assigns a uniform probability over the 
classes Tj, 1 5 j 5 N ,  and a uniform probability within each 
class. A prefix code matched to PT would assign to x? a code 
length LT(z;) = log T(x; )  + log N .  The probability under 
PT that a code matched to some PM(.) would assign to xc;” 
less than J , T ( z ; )  - ~ l o g N  bits is upper bounded by N-‘ 
(see, e.g., [ 11, Theorem 11). Now, clearly, this probability is 
N-’ E;”=, p j ,  which is exactly (9). 

Hereafter, we assess the performance of M relative to some 
competing family F of probability assignment schemes, by 
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comparing each assigned probability P ~ ( z y )  to the maximum Thus, by (13) and (17), the equivalence classes defining the 
probability &(I?) assigned by a scheme 3 ( : r y )  in F, matched partition to b: used in conjunction with F and Lemma I ,  are 
to the specific sequence. Thus, while M is a fixed sequential given by sequences having the same FS-type w.r.t. F ,  i.e., 
scheme, independent of zy, a “batch” procedure in which the sequences having the same counts fin(..) for every z E S 
sequence is prescanned is allowed for chosing the best scheme and every a f A .  Furthermore, by the FS property ( 1  7), any 
in F. Note that, in general, M F. For a given family ff, let scheme in F must use a fixed strategy each time a symbol 
the partition of Lemma 1 be defined by the equivalence relation a E A is received at state z E S .  It follows by Gibb’s 

i.e., two sequences are in the same class if and only if they are 
assigned the same probability for every 3 E F. Then, Lemma 
1 can be used to measure the performance of M relative 
to F, provided that we lower-bound lT(zy)l, as defined by 
(13), in terms of PF(X?), i.e., the “maximum likelihood” 
of x; w.r.t. the model family F. The reference families in 
this section contain machines with limited resources, that 
implement schemes whose ith assignment, 7 2 1, depends on 
the past data xi--’ only through a state variable ~ ~ - 1 ,  which 

Specifically, an FSM F is defined by a state space S of 
finite cardinality k ,  with the transitions between states being 
determined by a “next-state’’ function f that maps S x A into 

evolves recursively according to 

“empirical” conditional probability pn(alz) relative to z;, 
defined by 

A 
if CLn(z) = C a E A P n ( z a )  = 0 

i),(alz) = p n ( d a )  
A { ”,,,,, otherwise, 

(18) 
and derived from the joint empirical measure over S x A 

(19) 
A I h ( z a )  is determined by an FSM. Pn(za) = -. 

n 

Thus, the best scheme in yields a total probability 

(20) 
S.  When a sequence z1 z 2  . . . is fed into F ,  the state variable 

-nEi (Z; (F)  PF(z;) = 2 

(14) 

where zo is a given initial state. An FSM can be illustrated 
as a directed graph with k vertices corresponding to the 
states and with edges corresponding to the allowable state 
transitions dictated by f. Thus, we assume Q outgoing edges 
from each vertex, although later on we dispense with this 
assumption. Markovian machines are a special case where 
the state is formed by sliding a finite window on the recent 
past of the data. A machine F is completely characterized by 
the quadruple ( S ,  k ,  f, zo). We also assume that the graph 
determined by f is strongly connected, but the results can be 
extended to any FSM. If F is the family of schemes defined 
by an FSM F ,  then by ( 1 )  the probability assigned to 3:; by 
a scheme 3 E F has the product form 

A 
zi = f(2i-1, zz), 2 2 1 

n 

where fi(z;IF) is the conditional entropy w.r.t. F of the 
empirical measure, namely 

where hereafter the logarithms are taken to the base 2 and 

Next, we use Corollary 1 to derive a bound on the perfor- 
mance of any scheme M w.r.t. the family of schemes defined 
by an FSM 17,  for “most” sequences, in the sense defined by 
(9). By (20), we need to lower-bound the difference 

A OlogO = 0. 

PA.;) = nP(”l lz l - l )  (15) 

where p ( a l z ) ,  a E A ,  z E S, is a vector of conditional 
probabilities that represents the free parameters of the machine, 
and 20” = zo z1 . . - z r L  denotes the sequence of states, as 
defined by (14). Now, defining for every z E S and every 
a E A the count 

This is done in the following theorem, which is the main result 

Theorem f: Let M be an arbitrary probability assignment 
scheme. For any FSM F = ( S ,  I C ,  f, zo) supported by a 
strongly connected graph, fix E > 0 and let BM(EIF) denote 
the set of n-sequences for which M assigns a probability 
I‘M(.) such that 

a=1 of this sectica. 

where 
1 if z,-1 = z and z, = a Let “(&IF)  denote the number of FS-types 7’ w.r.t. F for 

h ( Z a - 1 ,  z ;  z z ,  a )  = 0 otherwise, (16b) which 

then (15) takes the form 
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and let N denote the total number of FS-types. Then, 

Theorem 1 tells us that the log-likelihood assigned by any 
scheme to “most” sequences of “most” FS-types w.r.t. F ,  is 
asymptotically far away from the maximum by a quantity at 
least as large as 0.5k(a - 1)logn. This, of course, does not 
imply that the bound holds for all but a vanishing fraction of 
sequences. However, the rationale in measuring the relative 
sizes of the exception sets type by type is that it amounts to 
considering regions where the competing FSM behaves alike, 
and only the behavior of M may vary from one sequence to 
another. 

As observed from (7), the use of Corollary 1 in the proof of 
Theorem 1 requires auxiliary lower bounds on the number N 
of different FS-types and on the size [TI of an FS-type. The 
former bound is stated in Lemma 2 below, and its proof, which 
was given to us by N. Alon, is not reproduced here. The lower 
bound on 12’1, stated in Lemma 3, is derived in Appendix A 
and holds for all but a vanishing fraction of types, as stated in 
Lemma 4. An altemative bound that holds for every FS-type 
is given in [3], but it is not tight enough for our purposes. 

Lemma 2: Let F = ( S ,  I C ,  f ,  20) be an FSM supported by 
a strongly connected graph. Then, 

Proof of Theorem I :  Let SE/6 ,  F ( n )  denote the vanishing 
function d d n e d  in Lemma 3, and let T6 denote the set of 
FS-types that satisfy the corresponding condition of Lemma 
3. First, consider a sequence 2; E B M ( E I F )  such that 
T(z;) E 71. By Lemma 3, and using the simplified notation 
K = IC(a - l), we have A 

5 )  6 log 71 

log N .  (30) 

By Lemma 2,  for all sufficiently large TZ we have 

Thus, (30) yields 

By Corollary 1, the fraction of FS-types that belong to T6 and 
such that 

lo ,2</3 

(33) .- B M ( E I F )  T I  > N -  f lag  = n - ~ / 3  

never excel& n - ~ / 3 .  N ~ ~ ,  by L~~~~ 4, only a vanishing 
fraction of FS-types does not belong to T6. Hence, the total 
fraction N-lNM(&I F )  of types satisfying (24) vanishes. 

N > Cn‘“(“-l) (26)  

IT1 where C is a constant that depends only on F .  

FSM supported by a 
for every z E S and every a E A ,  

Lemma 3: Given E > 0, let T be an FS-type relative to an 
connected graph- such that 

where SE, ~ ( n )  is a vanishing function that depends only on E 

and on F .  Then, for all sufficiently large n we have 

L L  J 

where I?(TIF) denotes the empirical conditional entropy 
I?(z;IF), which depends on z; only through its type T(z ; )  = 
T.  

The FS-types not covered by Lemma 3 represent a vanishing 
fraction of the total number of FS-types, as stated in Lemma 
4 below. 

Lemma 4: Given an FSM F supported by a strongly con- 
nected graph, together with a vanishing function 6(n),  let N ( 6 )  
denote the number of FS-types T relative to F ,  such that 
p n ( z u )  5 pn(z )6(n)  for every z E S and every a E A .  Then, 

The proof of Lemma 4 is given in Appendix B. Lemmas 
1 4  provide the tools to prove Theorem 1. 

Q.E.D. 
As discussed in Section 111, we consider the achievability 

of the bound of Theorem 1 relative to the entire class of FS 
schemes, rather than a specific machine F .  To this end, the 
following corollary is needed. 

Corollary 2: Let J denote an arbitrary set of FSM’s F = 
(S .  k ,  f. z0) ,  each supported by a strongly connected graph. 
Fix E > 0, and let B M ( E )  denote the set of 71-sequences for 
which 

1 
--logPJ,l(z;) 
7L 

k ( a  - 1) 

FE J 

Then. 

The abo1.e corollary states that the “exceptional” set B M ( E )  
of the sequences for which M successfully competes [as 
defined by (23)] with the best FS scheme, based on any 
machine F E J ,  is the intersection of the exceptional sets 
for all F and, afortiori, it is “small.” 
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Comparison with previously reported results: So far we 
have been concerned with optimal probability assignments, 
and this allows the consideration of general sequential decision 
problems as noiseless coding, gambling, and prediction. In the 
coding case, each probability measure PM(x;+lIXf), 0 I 
i < n, can be used with an arithmetic coder [24] to perform 
a noiseless code LM with total code length 

n- 1 

LM(x;) = - ~ l o g p M ( z i + l l ~ ~ )  = -logpM(x;). (36) 
i = O  

Thus, one can define the scheme M as a noiseless se- 
quential encoder competing with FS encoders, as was done 
in [33], with the additional constraint that the ideal code 
lengths L F ( z ,  a ) ,  U E A ,  z E S ,  assigned by the FS 
encoder at each state, satisfy the Generalized Kraft inequality xaEA 2 - L F ( ” -  a) 5 1 for every z .  Now, proceeding as in [27, 
Theorem 11, one can easily show that for any scheme M ,  any 
machine F ,  and every n, we have 

r 1 

It can be further shown that an asymptotically equivalent lower 
bound is 

log n 2 k ( a  - 1)- - O(n-l) .  
2n (38) 

Thus, Theorem 1 strengthens the pointwise minimax bound 
(37), due to Shtar’kov [27, Theorem I], in a way similar to 
that in which Rissanen’s bound on the average code length 
[22] strengthens the earlier minimax bounds [6]-[8], [13], in 
the probabilistic case. In this process, we obtain an asymptotic 
result, instead of a bound that holds for any value of n, as in 
[27]. Again, a similar phenomenon occurs when comparing 
the lower bounds of [22] and [7]. 

Moreover, Theorem 1 has a completely deterministic mean- 
ing, unlike the setting of [27], where the bound involves an 
(implicit) average criterion, along with the maximum taken 
over An, which is suited to individual sequences. In [27], x; 
is emitted by an FS source (supported by an FSM F )  with 
probability Pe(x;IF), where 0 denotes a vector of conditional 
symbol probabilities. Although (22) is there defined as a 
“maximum own redundancy” for single messages [with a 
length function satisfying (36)], the definition relies on the 
interpretation of 

as a redundancy. Now, the use of (39) assumes, implicitly, that 
having a code length close to -logPa(z;lF) is a desirable 
goal, which of course is the case if we need to minimize also 
the average code length w.r.t. Pe(.IF). In this respect, we 
notice that some authors refer to (39), in a probabilistic setting, 

as a “pointwise redundancy” (see, e.g., [5], [17, Definition 11). 
unlike our definitions, where this term is reserved to (22). 

Finally, we: comment that although we assumed the graph 
of the considered FSM’s to have exactly a outgoing edges 
per state, the results can be easily extended to any strongly 
connected griiph with E edges. In this case the model cost 
[i.e., the second-order terms in the right-hand sides of (23) 
and (34)] would be ( E  - k)(logn)/2n. For example, E = I C 2  
corresponds to a first-order Markov chain, while E = ak is 
the case considered so far. This allows different alphabet sizes 
per state, which is essentially different from letting N be the 
maximum size and taking some transition probabilities to be 
zero. 

111. ACHIEVABILITY AND THE “PLUG-IN”APPROACH 

Next, we discuss the achievability of the bounds given 
by Theorem 1 and Corollary 1. First, assume that F = 
( S ,  k, f ,  ZO) is a fixed, given FSM. Following Theorem 1 and 
considering second-order asymptotics, we define a scheme M 
as universal w.r.t. F ,  if for all sufficiently large n 

max [-n-’log~M(z;) - fi(x;~~)] 
x;EA” 

log n 5 k(a - 1)- + O(n-l) .  
2n (40) 

A scheme satisfying (40) achieves uniformly (up to an E )  the 
bound (23) for a given F and every sequence. Since M is 
sequential by definition, the probabilities it assigns must satisfy 
the condition (3) on the marginals. Moreover, the considered 
schemes are .rtrongly Sequential, i.e., the probability assigned 
to z,+~ depends neither on future outcomes nor on the length 
n of the entire sequence xy to be processed. Noiseless codes 
derived as in (36), with a probability assignment satisfying 
(3), have been termed regular [20]. A universal probability 
assignment mechanism (for a specific F )  and its sequential 
code, have bcen studied in [ 131, [27], where it is shown that 

n 

P’(~;IF) = ne:-l(x,iz,-l, F ) ,  
=1 

A 
z, = f(z,-1, G ) ,  1 I I n ,  (41) 

where 

satisfies (40). The assignment (41)-(42) is similar to Laplace’s 
rule of succession, except for a different bias. 

Here, howcwer, we consider a stronger definition of univer- 
sality, that corresponds to Corollary 2. Let 9 denote the set of 
all FSM’s (01’ any number of states), and let J denote a finite 
(unspecified) subset of Q. Following Corollary 2, a scheme M 
is defined as universal in the class of FS schemes, if for every 
J and all sufficiently large n (depending on J ) ,  it satisfies 
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Thus, we are interested in schemes that are simultaneously 
universal w.r.t. every FSM F E J ,  with an unspecified number 
of states, where J is finite but unknown. Note that although the 
class of FS models is not nested (as opposed to the discussion 
in Section I), each k-state FSM is nested in all its refinements 
with k’ > k states, and thus the same arguments apply to the 
minimum in (43). Universality relative to the FS class, can be 
expressed in terms of universality w.r.t. each F ,  as stated in 
Lemma 5 below. 

Lemma 5: A scheme M is universal in the FS class, if and 
only if it is universal w.r.t. every F E 9. 

Proof: First, assume that M is universal w.r.t. every 
F E 9. Thus, (40) holds for every F ,  with the O(n-l) term 
being a function E F ( ~ )  that depends only on F .  Next, consider 
a finite subset J of Q. Since J is finite, there exists an O(n-’) 
function that uniformly upper-bounds c F ( n )  over J .  Hence, 
(40) (with F E J) clearly implies (43), and since J is arbitrary, 
M is universal in the FS class. 

Conversely, if M is universal in the FS class, (43) holds 
for every finite subset J of 9. In particular, it holds when 
J is a single machine F .  Consequently, (40) holds for every 
F E 9. Q.E.D. 

A code derived from such a universal scheme M asymptot- 
ically achieves, for every sequence and in a predictive manner, 
the MDL given by a two-part code in the class of FS models, 
without any prior knowledge of the model structure. Codes 
whose universality applies not only to a given F but to every 
F simultaneously, have been termed “twice-universal” [25]. 
However, the universality of the codes considered in [25] has 
been established merely in a probabilistic sense. 

To the best of our knowledge, the problem of achieving the 
MDL both pointwise and sequentially, has not been explicitly 
treated before. The semi-predictive code of [20, Theorem 21 is 
not sequential, for a prescan step is needed to find the optimal 
machine F .  In [27, Theorem 31, where the questions of strong 
sequentiality and pointwise optimality are also addressed, F 
is assumed as known, while we require universality w.r.t. 
the entire class. Although this requirement [see (43)] is also 
stronger than that of [27, Corollary 41, the mixing approach 
employed there would work in our framework if an upper 
bound on k was known. However, this approach fails when 
the set J is unknown. Also, if J grows with n, as suggested 
in 1271, the marginality condition (3), needed for strong 
sequentiality, might be violated. Finally, the scheme proposed 
in [29] is sequential, but achieves the MDL in the probabilistic 
sense only, with the data being a sample of some FS source. 

Due to their success in solving related problems, the se- 
quential schemes of [27] and [29] are plausible for universal 
probability assignment in the sense defined by (43). Observe 
that although the conditional measure (42), used for uni- 
versality in [27] for a given F ,  results from a mixture of 
measures over the parameter space, it can also be viewed 
as “plugging” the “estimated parameter” O;(xa+1 Iz., F )  at 
time i + 1. In the same spirit, a “plug-in” approach is also 
used for double universality in a probabilistic sett_ing [29], 
where at each time instant i a model structure Fa, which 
recursively generates a state sequence i,, is estimated, and 
then the empirical probability O;(~.+ll2~, F.) induced by the 

estimated model is assigned to the next symbol The 
total probability assigned to xyA by this “plug-in” scheme is 
pPr(x; )  = n?zt e:(zi+lpi, ~ i ) .  TO assess its performance 
in a deterministic setting, we must compare 

. n  

(44) 
to the per-r,ymbol MDL 

where k is the number of states in F and J is any finite set 
of FSM’s. 4s discussed in Section 11, (45) is essentially the 
optimal code length for “most” sequences. 

A natural model structure estimator to be used sequentially 
in this plug-in approach is the asymptotic MDL estimator w.r.t. 
the data x; observed so far, i.e., 

log i B(ziIF) + k ( a  - 1)- 
22 

The resulting per-symbol code length Zp’(xT), defined in 
[21] as the predictive stochastic complexity of x; w.r.t. the 
appropriate class of models, was conjectured there to be 
asymptoticdly equivalent to the nonpredictive stochastic com- 
plexity, i.e. to the MDL. This conjecture has been confirmed 
[29] both in expectation and with probability one using a slight 
modification of (46). However, it can be shown that for any 
sequential model structure estimator of the form 

where v(i) is a vanishing positive “penalty term,” the conjec- 
ture fails to hold uniformly for every sequence. In other words, 
there is a c~unterexample sequence whose code length in the 
plug-in approach is larger than (45) by at least an O(n-’log n) 
term. Note that both (46) and the estimator [29] are special 
cases of (47). Estimators having the asymptotic form (47) 
are reasonable since, by (20), H(z”,F) is the minimum of 
-i-llog P3-(x;) over all probability distributions PF(-)  that 
are based cn F and, furthermore, higher order models in the 
class that are refinements of lower order models, uniformly 
yield a smaller empirical entropy. Thus, a penalty term v ( i )  
is needed. [n Appendix C we sketch the idea underlying the 
constructioii of the counterexample sequence. More details can 
be found in [12]. 

1V. THE “MIXTURE” APPROACH 

Rather than trying to estimate the best machine F that fits 
the data, we construct a universal scheme M satisfying (43) 
for every fmite set J of FSM’s and all sufficiently large n, 
by computing a “mixture” of schemes satisfying (40), one for 
each specific F .  This idea has already been applied in [26] 
for prediction in a probabilistic setting. The difficulty is that 
J is unknown and the number of model families is countably 
infinite, so 3 naive mixture involves an infinite summation and 
hence is inapplicable. Fortunately, it turns out that by defining 
the compor ents of the mixture appropriately, the contributions 
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of all machines with sufficiently many states can be made 
identical. Since these machines assign the same probability, 
this enables the computation of the mixture. This approach is 
applied also in Section V to other situations of interest. 

Specifically, for a given F ,  consider the probability assign- 
ment defined by (41) and (42). Following [20], we order the 
set 9 = {Fl  , Fz, . . .} of all FSM's, such that a machine 
with fewer states precedes another with more states, and 
the ordering of machines with the same number of states 
is arbitrary. Let { ~ ( j ) } j z l  denote a positive summable se- 
quence, rm = zGl~(j), and r i  = xi.=l~(j). Define the 
probability measure 

00 

j=1 

Note that r ; ' T ( j )  serves as a prior on Fj E 9. This slowly 
decaying weighting is needed to cope with the infiniteness of 
9. By (41) and (42), 

(49) 
aEA 

for every z 2 0, with xy denoting the null string A, for which 
P'(AIF) e 1. Hence, 

is a well-defined probability assignment for every i 2 0. 
Since the probability assigned to each symbol depends on the 
past string only, this assignment can be implemented by a 
sequential scheme M'.  Moreover, for every Fj E 9 with k j  

states we have 

or, equivalently, 

roo 
Y(3)  

-log P'(x;) 5 -log P'(z? IFj) + log-. (52) 

Now, by [13], [27], for every xy E A" 
1 
n 

--logP'(z;lFj) 5 I;T(z;JFj) 

log n + kj(a - 1)- 2n + O ( n - l )  (53) 

which together with (52) implies 
1 
n 

--logP'(z;) 5 Ej(z;IFj) 
log n + k j ( ~  - 1)- 2n + O ( n - l ) ,  (54) 

where the last term in the right-hand side of (52) has been 
included in the O(n- ' )  term. Consequently, M' is universal 
w.r.t. every Fj E 9. By Lemma 5, it is also universal in the 
class of FSM's. Of course, (48) cannot be computed since it 
involves an infinite summation. In addition, the real constant 
ro3 is needed if we want PI(.) to be a probability measure. 
Finally, observe that a naive approach of mixing a number of 
terms that grows with n, might violate (3) and hence must 

be ruled out. We next propose a method that overcomes these 
obstacles. 

Define for each F = (S, k ,  f ,  20)  E 9 an auxiliary 
distribution 

n 

and P(AIF) 2 1. The auxiliary parameter vector B,(alz, F )  
differs from i?:(uIz) only in a number of symbols that equals 
the model order and, hence, is independent of n. Thus, the 
deviation is asymptotically inconsequential. This idea was 
already employed by Ryabko [26, eq. (9)] in the Markovian 
case. However, the goal in [26] is the definition of a Markovian 
process in a probabilistic framework, without specifying an 
initial state, which requires arbitrary probability assignments 
until there ar: enough symbols for determining a state. Now, 
for every n ;: 0, let F3(") denote the last machine in 9 with 
n states. Givm a constant I? 2 roo, define 

which is clearly a probability measure for each n 2 0. The 
particular assignment (56) guarantees a finite number (growing 
with n) of machines in the summation of (57), while the 
contribution of the others, that assign a uniform probability to 
all the sequerces, is gathered in the rightmost term of (57). On 
the other hand, the assignment (56) for z < k is unimportant in 
[26], where the issue of the infiniteness of the summation is not 
considered, thus maintaining the infinite summation of [26, eq. 
(1 l)]. We int-rpret (57) as a mixture of probability measures 
with a prior r - l y ( j )  on F3 E 9, J 5 j ( n ) ,  where the 
machines witlhj > j ( n )  share a common weight l-r-1r3(nl. 
The use of I' is aimed to avoid a real constant I?m. Note that 
the prior depends on n whenever r # Fm, but in a way 
that guarantees the marginality condition (3), as claimed in 
Theorem 2, where a new universal machine M is defined. 

Theorem 2: Let 

Then PM (. 1. ) is a well-defined sequential probability assign- 
ment for every 1: > 0, and the corresponding scheme M is 
universal in I.he class of FSM's. 

Proof: I;irst, we show that PM(zz+l&) is a well- 
defined cond tional probability. Consider the sum 

+ (1 - a-(n+l) . (59) 
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By (55) ,  for every n 2 0 and j 2 1 we have 

C P ( z ; a p , )  = P(Z7IFj). (60) 
aEA 

In addition, by (55) and (56), if j > j ( n )  then P(z;"IF') = 
a-" for every 2; E A". Hence, (59) takes the form 

j ( " )  

a E A  j=1 
p(,;,) = r - l ~ Y ( ~ ) w w )  

j=1 

Consequently, PJM(xc;+~ 1x1) is indeed a probability measure 
for every i 2 0, allocated by a scheme M .  

Next, we prove that M is universal in the class of FS 
schemes. By Lemma 5 ,  it suffices to prove that it is universal 
w.r.t. every given Fl = (S, k ,  f, 20) = F E XP. For all 
sufficiently large n, we have k < j (n) .  In addition, 2 
roo > for every n 2 0. Hence, denoting y = y(l), for 
all sufficiently large n and every 2; E A" we have, by (55),  
(56), and (57h 

where the last equality follows from (41). Consequently, by 
(53) and (62), 

1 i r k  1 
n n Y n  n 

--logP(z;) < -log- + -1oga - -logP'(z;lF) 

log n 
2n < f i ( z?IF)  + k ( a  - 1)- + O(n- l ) .  (63) - 

Therefore, M is universal w.r.t. F .  Since F is arbitrary, the 
proof is complete. Q.E.D. 

Note that a similar approach can be used with more re- 
stricted model families. Examples are Markov and finite- 
memory (FSMX) models, i.e., models where each state is 
determined by a bounded number of past symbols [20], [30]. 
If an upper-bound on the length of the states is known (so 
that J in (43) is a given finite subset of Q), the number of 
terms in the mixture can be made finite. In this case, an elegant 
recursive algorithm that computes the mixture without explicit 
enumeration of the machines has been proposed recently [32]. 

As we noted for the bound in Section 11, we can reach 
optimality in a stronger sense, by considering in the mixture 
machines supported by strongly connected graphs with an 

arbitrary number E of edges. A machine with less than a 
outgoing edges at some state, assigns probability zero to some 
sequences, for which it does not contribute to the mixture. 
With this approach we achieve, whenever possible, a smaller 
model cost within each family, namely ( E  - k)(logn)/2n. 

v. APPLICATION TO OTHER MODELS 

The idea of creating a universal measure P(.)  by using a 
countable mixture of models { F j } j l l  which degenerates to 
a finite mixture, is applicable to other situations of interest. 
Consider the following two examples. 

a) "Pieccwise stationary" data: Suppose that the data is 
expected to have a "piecewise stationary" structure, namely, it 
can be divided into segments having different characteristics, 
but in eacl- segment the structure is relatively "simple" in 
the sense that it can be compressed efficiently by a simple 
machine, say, a single-state machine ( k  = 1). An extreme 
example is %I8 = 0000000000011111111111111111. In such 
cases, the natural approach would be to partition the data into 
two or mort: segments and to handle them differently. For in- 
stance, in the case of two segments, we wish tp find a universal 
sequential scheme M that nearly attains mH(zyIF) + (n  - 
m)k(zk+,IF), where m is the length of the first segment 
in the best partition and F is a given k-state model whose 
assignment5 are "adapted" to the current segment as defined in 
(20). More precisely, a reasonable measure of the performance 
of a universal scheme w.r.t. z;" and to F ,  would be 

When data flows serially, the universal scheme M knows 
a priori neither the best parameters associated with each 
segment, nor the best boundary point m. Following the idea 
of (57), consider a prior r;'Y(.) on m 2. 1. Note that even 
though the relevant subset J of 0 in (57) was finite, we 
needed a nonuniform prior in order to cope with the infinite 
number of models, for J was unknown. Similarly, here m 
can take only n + 1 values but, since n is unknown (strongly 
sequential scheme) this prior is proposed in order to define a 
universal measure independent of the final value i = n, which 
is constructed by the mixture 

i -1  

where r 2 rm. This measure clearly satisfies the marginality 
condition (:I), thus yielding P J M ( z ~ + ~  [xi), defined as in (58). 
This can be interpreted as a mixture of measures with a prior 
on m given by r-l.y(m). Thus, with probability 1 -I'i-Ir-', 

m might be as large as i, which means that no transition occurs 
in the first i symbols. It is easy to see, using the same technique 
as in the proof of Theorem 2, that the resulting redundancy is 
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upper-bounded for every x; as 

k ( a  - 1) logn Iogn 
A(Z?, MIIF) 5 2 7 .  - + - + O(n-l)  

71, n 

= [ k ( a  - log 71 
1) + 11- n + O(n-l) ,  

where each segment contributes an 0.5[k(a - l)](logn)/n 
term and an extra (logn)/n term is due to the unknown 
boundary point m. It has been shown in [15], where this 
problem has been studied in a probabilistic setting (i.e., coding 
for piecewise stationary information sources), that this is 
essentially the minimum achievable expected redundancy. A 
fortiori, it is a lower bound on the m i n i m  redundancy 
maxx;EAnA(x;, MIIF) corresponding to the setting of [27]. 
Finally, if we also desire a doubly-universal scheme (i.e., F 
is not specified), another mixture, this time on F as proposed 
in (57), is needed. 

b) Block coding: Suppose we want to design a strongly 
sequential, universal code that competes with the family of 1- 
length block encoders, where 1 is unspecified, i.e., the family 
of uniquely decodable schemes that map input blocks of 
(unknown) length I to variable length codewords. These are 
single-state encoders defined on the super-alphabet of I-tuples. 
The comparison basis is similar to the one used with the FS 
family. Note that any such encoder can be simulated by an 
FS scheme with the same number of free parameters [24, 
Theorem 11 and, hence, the universal code of Section IV 
can successfully compete with this family, but there might 
be situations where the "natural" model for the data is an 1- 
extension, and hence computing the mixture (57) would be 
unnecessarily costly. 

Proceeding as in Section 11, one can readily show, using 
Kraft's and Gibb's inequalities, that for a fixed 1 the best 
code in the family assigns to 21; a per-symbol code length 
that equals the normalized Ith-order empirical entropy f i l  ( x y ) ,  
defined by the relative frequency of nonoverlapping 1-tuples 
(we assume that 1 divides 71). Denoting by Lc(x1;) the length 
assigned to x;" by any code C, we can proceed as in Section I1 
to show that for any given E > 0, any code C, any block length 
1, and "most" sequences x1; we have, for all sufficiently large 
n, 

where the term "most" is defined as in Theorem 1 ,  with types 
being defined w.r.t. the lth extension of A. Thus, as in Lemma 
5, a code C is universal w.r.t. the family of block codes, if for 
every block length 1 and all sufficiently large multiples n of 
I ,  it satisfies 

5 (a1 - 
log 71 

1)- + O(n-l). 
2n 

Arguing as in Sections IV and V a), a strongly sequential, 
universal code for the family of block models is obtained as 
follows. For each block length I and every multiple i of I ,  

define the probability measure 

( a / l ) - l  

j=o 

where q j t ( : y l l )  is defined, for every I-tuple y that occurred 
pjl(y) times at nonoverlapping phases ml + 1, 0 5 m < j, 
in xiz ,  as 

For values cf i that are not multiples of 1, define T = Li/lJ, and 

It can be readily seen that, for each 1, P(.lI) satisfies the 
marginality condition (3). Now, for every i 2 1, define 

i - 1  

where y(.), rZ, and r, are defined as in Section IV. This 
probability measure also satisfies (3). Thus, the code length 
-logP(x;) defines a strongly sequential, regular code. The 
code is universal w.r.t. the family of block models in the sense 
that for all sufficiently large multiples n of 1, the upper bound 
(68) holds. Note that although the universal code is defined for 
every sequence length, its universality w.r.t. a block length 1 is 
well-definec only for lengths that are a multiple of 1. As in the 
previous cases, this can be interpreted as a mixture of measures 
with a prioi r--ly(l)  on 1. With probability 1 - r-lI'-l, 1 
might be as large as i ,  wi'? the resulting probability cy-' for 
the sequence, as follows from (71). 

Finally, we point out that these ideas can be easily general- 
ized to the case where not only the size 1 of the best alphabet 
extension is unknown, but also the choice of an optimal phase 
is allowed. In this case, for each 1, the probability P(x"lZ) 
would involve an additional mixture over all possible phases. 

APPENDIX A 
A LOWER BOUND ON THE SIZE OF AN FS-TYPE 

Our lower bound on IT1 is based on Whittle's formula [31] 
for the size of an FS-type. To state this formula we need 
some further notation. For a type T ,  let QT denote a k x k 
matrix whose rows and columns are labeled by the states in 
S ,  and suck that for any pair ( s ,  z )  of states, the entry &= 
is the number of transitions from s to z in T .  Note that at 
most k a  entries in QT are nonzero, and that the row-sum 
corresponding to a state z is p,(z), while the sum of all the 
entries is n. Moreover, the difference between the row-sum and 
the column- sum for z is S,,, - SZzn, where z ,  denotes the final 
state, which is uniquely determined by GT.  Now, divide every 
nonzero rou' of QT by its row-sum, and substract the resulting 
matrix fron- the k x k identity matrix Ik, thus obtaining a 
matrix denoted qT. Finally, denote the ( s ,  2)-cofactor of GT 
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by q T ( s ,  z), s ,  z E S. Whittle's formula states that 

An asymptotic lower bound on (A.l) for every FS-type T 
is given in [3], but it is not tight enough for our purposes. 
Instead, we use Lemma 3, that provides a tighter bound that 
holds for most types. 

In our way to the proof of Lemma 3, we notice that if all 
the rows of aT are nonzero, then mT takes the form I k  - a, 
where CP is a stochastic matrix. The following lemma applies 
to this case. 

Lemma A.1: Let @ denote a k x k stochastic matrix such 
that each column has an off-diagonal nonzero entry. Then, all 
the cofactors of Ik - @ are nonzero. 

We notice that, by Whittle's formula, the lemma holds 
whenever CP corresponds to an actual FS-type, for otherwise 
the type would be empty. However, our bounding technique in 
the proof of Lemma 3 requires that this hold for any stochastic 
matrix satisfying the conditions of Lemma A.l.  

Proof of Lemma A.1: Let 5 e Ik - a. First, note that 
d e t q  = 0 (1 is an eigenvalue for every stochastic matrix). 
- Next, suppose conversely that the (i, j)-cofactor m(i, j) of 
CP is also zero. Then, expanding d e t q  by its ith row, we 
conclude that it is independent of the (i, j) th entry qij of 
CP. Thus, we can change the value of $ij without affecting 
neither the determinant, nor the cofactors of the entries in the 
ith row. Replace it by any arbitrary value. Furthermore, both 
the determinant and the ( 2 ,  2)-cofactor remain unchanged if 
we also replace the ith column by the sum of all the columns. 
Since the sum of the entries in each row of 5 is zero, except for 
the ith row, where $ij has been replaced by a different value 
and hence the new row-sum is some ff # 0, we can expand 
the unchanged d e t q  by the (new) ith column, thus obtaining 
(T .m(i, i). It follows that s(i, i )  must also be zero. (In fact, 
the same can be shown for all the cofactors of the ith row.) 

Now, let ai denote the matrix obtained from clp by deleting 
the ith row and the ith column. By definition, 

- 

--i 
0 = q ( i ,  i) = det CP (A.2) 

where 52. e 4 - 1  - ai. Since ai, is a substochastic matrix, the 
entries &,: 0 < E ,  j < IC of 5' satisfy 

for every 1 (note that (A.3) is satisfied with equality for 
every 1 only if ai is also a stochastic matrix). Since by our 
assumptions some off-diagonal entry in the removed column 
is positive, ai is not stochastic and, hence, strict inequality 
holds in (A.3) for at least one row 1 .  Now, an extension by 
Hadamard of a theorem by U v y  [2, p. 691, states that this is 
a sufficient condition for a determinant to be nonzero. Hence, 
we have a contradiction. Q.E.D. 

Proof of L5"a 3: First, we lower-bound the cofactor in 
Whittle's formula. As an auxiliary step, we consider FS-types 
for which 

for every z E S, every a E A, and some constant 6 > 0. For 
these types, sT takes the form Ik - a, for some stochastic 
matrix a. Firthermore, each entry of CP corresponding to 
an edge of F is at least 6, which, in particular, by the 
strong connectivity of F, ensures that satisfies the condition 
of Lemma A l .  Now, consider each cofactor of the entries 
of I k  - @ as a continuous function of the nonzero entries 
of a, which by (A.4) belong to a compact subset A of 
the space (0, l ) k a .  By Lemma A.l, the sign of these IC' 
functions is constant over A and, by Whittle's formula, must 
be positive. lly the compactness of A, each function attains a 
positive minimum, yielding a unique minimum value g F ( 6 ) ,  
independent of n, over all the functions. Thus, the function 
QF (S), which uniformly lower-bounds all the cofactors over 
all the matrices qT, possesses the following properties: it 
is continuous, nondecreasing, positive for every S > 0, and 
lim6,ogF(S) = 0, since with = Ik all the cofactors are 
clearly zero. It follows that g F ( 6 )  is strictly increasing for 
sufficiently small values of 6, for otherwise it would be zero 
in a neighborhood of 0. Consequently, it has an inverse gF1(x) 
which tends to 0 when x tends to 0. 

Next, given E > 0, let SE, F(n) g -1 (n-E/2 ) .  Clearly, 

By the definition of g( . ) ,  for every FS-type T satisfying (27) 
for every z I: S and every a E A, we have 

As for the other terms in Whittle's formula we have, by 
Stirling's inequalities, 

k ( a  - 1 )  
2 z . f i (X;IF)  - ~ log 2rn 

2 
k(a - 1) + E > r , .k(x;IF)  - log n 

2 (A.7) 

where the last inequality holds for sufficiently large n. By 
(A. 1 j and (A..5)-(A.7), the proof is complete. Q.E.D. 
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APPENDIX B 
PROOF OF LEMMA 4 

By Lemma 2, and since 6(.) is a vanishing function of n, 
(29) will follow if we can upper-bound N ( 6 )  as 

N ( 6 )  5 R6(71)(71+ l)(e-Qk (A.@ 

for some constant R. Since p,(z) 5 71 for every z E S ,  it 
suffices to show that the number "(6) of types such that 
p,(za) 5 nS(n) for every z E S and every a E A, is 
upper-bounded by the right-hand side of (A.8). Now, given 
a type, each edge of the graph of F (which we also denote by 
F ) ,  has an associated transition count, namely the number of 
transitions corresponding to this edge for that type. Let N,(6) 
denote the number of types with given final state z,  and such 
that a fixed edge e has an associated transition count not larger 
than n6(n). Clearly, using a union bound where we let z,  
range over S and e range over the set of edges, we obtain 

('4.9) 

Thus, a sufficient condition for the desired upper bound on 
N'(S) ,  is 

N,(s) 5 n(n)(71+ I ) ( ~ - ' ) ' ~  (A. 10) 

for any edge e of F and any z ,  E S. By a simple counting 
argument, (A.lO) will, in tum, follow, if we show that given 
n and the final state of a type, we have k ( a  - 1) degrees 
of freedom in the choice of the entries of the corresponding 
matrix aT, and that any fixed entry (corresponding to the edge 
e) can be considered as one of the free parameters, so that a 
factor nh(n) appears in the upper bound. In other words, we 
need to prove that there exists a subset E of k edges in F ,  with 
e E ,  whose associated counts (for any type) are uniquely 
determined by the remaining k ( a  - 1) counts, that correspond 
to the set E of the other edges of F .  Next, we demonstrate 
one such set E or, equivalently, a partial graph G of F with 
k vertices (the same as F )  and k edges, which are exactly the 
members of E. 

In our way to G, we first delete e from F (since, by 
definition, e is not in G). Since F is strongly connected, the 
resulting graph is (at least) connected. Hence, it possesses a 
partial graph which is a tree 1 1 ,  p. 1531. Add to this tree an 
additional edge from F ,  different from c ,  thus obtaining a 
partial graph of F ,  with k vertices and k edges. This is our 
graph G, so that it remains to prove that it has the desired 
property, namely that the transition counts corresponding to 
its edges are uniquely determined by the k(cr - 1) counts 
corresponding to the edges in E, for any type. Since G is 
connected and has as many vertices as edges, it is either a 
single cycle, or has a vertex with only one incident edge e' 
(such a vertex is termedpendunt, [ 1, p. 1521). In the latter case, 
since the difference between the row-sum and the column-sum 
of QT for any state z is 6,,, - Szz,, , we have a linear equation 
that uniquely determines the count corresponding to (J' from 
the counts corresponding to the edges in incident at the 
pendant vertex. Remove e', whose count has been determined, 
and the corresponding pendant vertex from G, thus obtaining 
a new connected graph with k - 1 edges and k - 1 vertices. 

N'( 6) 5 k2nN, (6). 

We can recursively continue with this process, until we end 
up with a cycle. Now, consider any edge in the final cycle, 
outgoing from state z E S and labeled with a symbol a E A. 
Had the corresponding count p,(za) been determined, one 
could have determined the remaining counts in the cycle by 
linear operations, as described for the pendant vertices. Thus, 
there is a linear equation relating p,(za) with the counts that 
are still to be determined. Furthermore, the sum of all the 
counts associated with the edges in F is n. Hence, there is 
a linear equation that either determines p,(za) (in case the 
counts are Compatible), or has no solution. Assuming that the 
counts correspond to an actual type, they must be compatible, 
which provw our claim. The proof is complete. Q.E.D. 

APPENDIX C 
THE FAILURE OF THE PLUG-IN APPROACH 

The counterexample sequences are constructed in a simple 
case where only zero- and first-order Markov models are 
considered. The former is a single state machine, that assigns 
to each symbol some constant probability distribution, while 
for the lattcr the state at time i is zi, and s! it can assign 
one of Q probability distributions to zi+l.  Let H,(zf) denote 
the empirical conditional entropy of 2; w.r.t. model order m. 
Thus, the estimator (47) takes the form 

(A. 11) Estimate model order 0 if $(zi) - $l(zi)  < ~ ( i ) ,  
Estimate model order 1 if Ho(zf) - HI(X;) L ~ ( 2 ) .  

We further consider a binary alphabet, for which the MDL 
uses v ( i )  =: 0.5i-110g2. Now, if 

2iu(i) 
lim - # 1, 

i-+m logi 

then either 
log2 log2 

.(i) - - > G- 
22 2i 

(A. 12) 

(A. 13) 

for some positive C, in case v ( i )  dominates 0.52-'10g i, or 

log 2 log i 
Y ( i )  > c- -- 

2i 22 
(A.14) 

for some 0 < c < 1, whenever ~ ( i )  is dominated by 
0.5i-'log i .  

For both cases where (A.12) holds, the counterexample se- 
quences coristructed in [12] satisfy Ho(zf) = 1 and H l ( z f )  = 
1 - S ( i )  up to an O(2-l) term, where S ( 2 )  lies between ~ ( i )  
and (log i ) /  22 and, for large a, is away from both by at least 
an O(i-llogi) term. The resulting code length is 

log n 
(A. 15) log 71 Ei,(z;) + 2m- 

m=O, 1 2n 

for large enough n, where K1 is a positive constant. More 
precisely, in case (A. 13) holds, the MDL of the entire*sequence 
is attained by model order 1, and its value is H l (zy )  + 
(2logn)/2rz, while the plug-in scheme that uses U(.) as a 
penalty tenn always estimates an order 0, thus leading to a 
per-symbol code length 

(A.16) 
log n log n 

l"(2;) = &(x;)+- = 8 1 ( z ; ) + S ( n ) + X  
2n 
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(within an O(n-’) term). In the case where (A.14) holds, the 
MDL of the-entire sequence is attained by model order 0 and 
its value is Ho(z; )  + (log n)/2n, while a plug-in scheme with 
penalty term U(-) always estimates an order 1, with a resulting 
per-symbol code length 

2 log n log n 
lP’(z;) = a,(z;) + - = a&:) - 6(n) + y, 

2n 
(A. 17) 

again, within an O(n-’ )  term. 
Finally, when (A.12) does not hold, (namely, for the 

asymptotic MDL estimator), Fe counterexample_ sequence 
constructed in [12] satisfies Ho(z i )  = 1 and H l ( z ; )  = 
1 - ~ ( i )  up to an O(2-l) term. Furthermore, for this sequence 
fio(z;) - &i(z;) Juctuptes around v( i )  so that about half 
of the time Ho(z:) 2 Hl(zf) + ~ ( i ) ,  and about half of the 
time fio(z?) 5 fil(z:) + ~ ( 2 ) .  In addition, in the first case, 
i.e., whenever order 1 is estimated, the next symbol is such 
that the probability assigned by this model is smaller than the 
one assigned by a zero-order one, and vice versa when order 
0 is chosen. Now, given the entire sequence z;, the MDL 
is attained by an order m which is either 0 or 1. Since the 
sequential probability assignment (42) associated with order 
713 satisfies (40), the MDL of z; is the corresponding code 
length. On the other hand, as stated above, both models are 
estimated alternately by the plug-in scheme. It can be shown 
that whenever the estimated order differs from m, there is an 
extra code length of O( J ( l n i ) l i )  (see [ 121). This overhead is 
contributed alternately, about half the time along the sequence, 
and hence the per-symbol excess code length above the MDL 
is about 

for some positive constant K2. It follows that, for large enough 
n, the corresponding code length satisfies 

(A.19) 
For further experiments regarding the sequential plug-in ap- 
proach for coding, the reader is referred to [16]. 

In summary, the plug-in approach that assigns an asymp- 
totically optimal code length in the probabilistic setting, does 
not attain the MDL lower bound (45) for each sequence in the 
deterministic setting, for any fixed vanishing penalty term. 
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